3.822 \(\int \frac{1}{\cos ^{\frac{5}{2}}(c+d x) (a+b \sec (c+d x))} \, dx\)

Optimal. Leaf size=77 \[ -\frac{2 a \Pi \left (\frac{2 a}{a+b};\left .\frac{1}{2} (c+d x)\right |2\right )}{b d (a+b)}-\frac{2 E\left (\left .\frac{1}{2} (c+d x)\right |2\right )}{b d}+\frac{2 \sin (c+d x)}{b d \sqrt{\cos (c+d x)}} \]

[Out]

(-2*EllipticE[(c + d*x)/2, 2])/(b*d) - (2*a*EllipticPi[(2*a)/(a + b), (c + d*x)/2, 2])/(b*(a + b)*d) + (2*Sin[
c + d*x])/(b*d*Sqrt[Cos[c + d*x]])

________________________________________________________________________________________

Rubi [A]  time = 0.202038, antiderivative size = 77, normalized size of antiderivative = 1., number of steps used = 7, number of rules used = 7, integrand size = 23, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.304, Rules used = {4264, 3850, 3768, 3771, 2639, 3849, 2805} \[ -\frac{2 a \Pi \left (\frac{2 a}{a+b};\left .\frac{1}{2} (c+d x)\right |2\right )}{b d (a+b)}-\frac{2 E\left (\left .\frac{1}{2} (c+d x)\right |2\right )}{b d}+\frac{2 \sin (c+d x)}{b d \sqrt{\cos (c+d x)}} \]

Antiderivative was successfully verified.

[In]

Int[1/(Cos[c + d*x]^(5/2)*(a + b*Sec[c + d*x])),x]

[Out]

(-2*EllipticE[(c + d*x)/2, 2])/(b*d) - (2*a*EllipticPi[(2*a)/(a + b), (c + d*x)/2, 2])/(b*(a + b)*d) + (2*Sin[
c + d*x])/(b*d*Sqrt[Cos[c + d*x]])

Rule 4264

Int[(u_)*((c_.)*sin[(a_.) + (b_.)*(x_)])^(m_.), x_Symbol] :> Dist[(c*Csc[a + b*x])^m*(c*Sin[a + b*x])^m, Int[A
ctivateTrig[u]/(c*Csc[a + b*x])^m, x], x] /; FreeQ[{a, b, c, m}, x] &&  !IntegerQ[m] && KnownSecantIntegrandQ[
u, x]

Rule 3850

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(5/2)/(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)), x_Symbol] :> Dist[d/b, Int[(
d*Csc[e + f*x])^(3/2), x], x] - Dist[(a*d)/b, Int[(d*Csc[e + f*x])^(3/2)/(a + b*Csc[e + f*x]), x], x] /; FreeQ
[{a, b, d, e, f}, x] && NeQ[a^2 - b^2, 0]

Rule 3768

Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> -Simp[(b*Cos[c + d*x]*(b*Csc[c + d*x])^(n - 1))/(d*(n -
 1)), x] + Dist[(b^2*(n - 2))/(n - 1), Int[(b*Csc[c + d*x])^(n - 2), x], x] /; FreeQ[{b, c, d}, x] && GtQ[n, 1
] && IntegerQ[2*n]

Rule 3771

Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> Dist[(b*Csc[c + d*x])^n*Sin[c + d*x]^n, Int[1/Sin[c + d
*x]^n, x], x] /; FreeQ[{b, c, d}, x] && EqQ[n^2, 1/4]

Rule 2639

Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2*EllipticE[(1*(c - Pi/2 + d*x))/2, 2])/d, x] /; FreeQ[{
c, d}, x]

Rule 3849

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(3/2)/(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)), x_Symbol] :> Dist[d*Sqrt[d*S
in[e + f*x]]*Sqrt[d*Csc[e + f*x]], Int[1/(Sqrt[d*Sin[e + f*x]]*(b + a*Sin[e + f*x])), x], x] /; FreeQ[{a, b, d
, e, f}, x] && NeQ[a^2 - b^2, 0]

Rule 2805

Int[1/(((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])*Sqrt[(c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]]), x_Symbol] :> Simp
[(2*EllipticPi[(2*b)/(a + b), (1*(e - Pi/2 + f*x))/2, (2*d)/(c + d)])/(f*(a + b)*Sqrt[c + d]), x] /; FreeQ[{a,
 b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && GtQ[c + d, 0]

Rubi steps

\begin{align*} \int \frac{1}{\cos ^{\frac{5}{2}}(c+d x) (a+b \sec (c+d x))} \, dx &=\left (\sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)}\right ) \int \frac{\sec ^{\frac{5}{2}}(c+d x)}{a+b \sec (c+d x)} \, dx\\ &=\frac{\left (\sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)}\right ) \int \sec ^{\frac{3}{2}}(c+d x) \, dx}{b}-\frac{\left (a \sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)}\right ) \int \frac{\sec ^{\frac{3}{2}}(c+d x)}{a+b \sec (c+d x)} \, dx}{b}\\ &=\frac{2 \sin (c+d x)}{b d \sqrt{\cos (c+d x)}}-\frac{a \int \frac{1}{\sqrt{\cos (c+d x)} (b+a \cos (c+d x))} \, dx}{b}-\frac{\left (\sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)}\right ) \int \frac{1}{\sqrt{\sec (c+d x)}} \, dx}{b}\\ &=-\frac{2 a \Pi \left (\frac{2 a}{a+b};\left .\frac{1}{2} (c+d x)\right |2\right )}{b (a+b) d}+\frac{2 \sin (c+d x)}{b d \sqrt{\cos (c+d x)}}-\frac{\int \sqrt{\cos (c+d x)} \, dx}{b}\\ &=-\frac{2 E\left (\left .\frac{1}{2} (c+d x)\right |2\right )}{b d}-\frac{2 a \Pi \left (\frac{2 a}{a+b};\left .\frac{1}{2} (c+d x)\right |2\right )}{b (a+b) d}+\frac{2 \sin (c+d x)}{b d \sqrt{\cos (c+d x)}}\\ \end{align*}

Mathematica [B]  time = 1.89428, size = 197, normalized size = 2.56 \[ \frac{\frac{2 \sin (c+d x) \left (-2 b (a+b) \text{EllipticF}\left (\sin ^{-1}\left (\sqrt{\cos (c+d x)}\right ),-1\right )+\left (a^2-2 b^2\right ) \Pi \left (-\frac{a}{b};\left .-\sin ^{-1}\left (\sqrt{\cos (c+d x)}\right )\right |-1\right )+2 a b E\left (\left .\sin ^{-1}\left (\sqrt{\cos (c+d x)}\right )\right |-1\right )\right )}{a b \sqrt{\sin ^2(c+d x)}}-\frac{2 b \left (2 \text{EllipticF}\left (\frac{1}{2} (c+d x),2\right )-\frac{2 b \Pi \left (\frac{2 a}{a+b};\left .\frac{1}{2} (c+d x)\right |2\right )}{a+b}\right )}{a}-\frac{6 a \Pi \left (\frac{2 a}{a+b};\left .\frac{1}{2} (c+d x)\right |2\right )}{a+b}+\frac{4 \sin (c+d x)}{\sqrt{\cos (c+d x)}}}{2 b d} \]

Antiderivative was successfully verified.

[In]

Integrate[1/(Cos[c + d*x]^(5/2)*(a + b*Sec[c + d*x])),x]

[Out]

((-6*a*EllipticPi[(2*a)/(a + b), (c + d*x)/2, 2])/(a + b) - (2*b*(2*EllipticF[(c + d*x)/2, 2] - (2*b*EllipticP
i[(2*a)/(a + b), (c + d*x)/2, 2])/(a + b)))/a + (4*Sin[c + d*x])/Sqrt[Cos[c + d*x]] + (2*(2*a*b*EllipticE[ArcS
in[Sqrt[Cos[c + d*x]]], -1] - 2*b*(a + b)*EllipticF[ArcSin[Sqrt[Cos[c + d*x]]], -1] + (a^2 - 2*b^2)*EllipticPi
[-(a/b), -ArcSin[Sqrt[Cos[c + d*x]]], -1])*Sin[c + d*x])/(a*b*Sqrt[Sin[c + d*x]^2]))/(2*b*d)

________________________________________________________________________________________

Maple [B]  time = 1.821, size = 353, normalized size = 4.6 \begin{align*} -2\,{\frac{1}{ \left ( a-b \right ) b\sqrt{-2\, \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{4}+ \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}}\sin \left ( 1/2\,dx+c/2 \right ) \sqrt{2\, \left ( \cos \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}-1}d} \left ( -2\,\sqrt{-2\, \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{4}+ \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}} \left ( a-b \right ) \cos \left ( 1/2\,dx+c/2 \right ) \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}+a\sqrt{ \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}}\sqrt{2\, \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}-1}{\it EllipticPi} \left ( \cos \left ( 1/2\,dx+c/2 \right ) ,2\,{\frac{a}{a-b}},\sqrt{2} \right ) \sqrt{-2\, \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{4}+ \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}}+\sqrt{-2\, \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{4}+ \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}}\sqrt{ \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}}\sqrt{2\, \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}-1}{\it EllipticE} \left ( \cos \left ( 1/2\,dx+c/2 \right ) ,\sqrt{2} \right ) a-\sqrt{-2\, \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{4}+ \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}}\sqrt{ \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}}\sqrt{2\, \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}-1}{\it EllipticE} \left ( \cos \left ( 1/2\,dx+c/2 \right ) ,\sqrt{2} \right ) b \right ) } \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/cos(d*x+c)^(5/2)/(a+b*sec(d*x+c)),x)

[Out]

-2*(-2*(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*(a-b)*cos(1/2*d*x+1/2*c)*sin(1/2*d*x+1/2*c)^2+a*(s
in(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticPi(cos(1/2*d*x+1/2*c),2*a/(a-b),2^(1/2))*(
-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)+(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*(sin(
1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2))*a-(-2*sin(1/2*d
*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*Elliptic
E(cos(1/2*d*x+1/2*c),2^(1/2))*b)/b/(a-b)/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)/sin(1/2*d*x+1/2*
c)/(2*cos(1/2*d*x+1/2*c)^2-1)^(1/2)/d

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{1}{{\left (b \sec \left (d x + c\right ) + a\right )} \cos \left (d x + c\right )^{\frac{5}{2}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/cos(d*x+c)^(5/2)/(a+b*sec(d*x+c)),x, algorithm="maxima")

[Out]

integrate(1/((b*sec(d*x + c) + a)*cos(d*x + c)^(5/2)), x)

________________________________________________________________________________________

Fricas [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/cos(d*x+c)^(5/2)/(a+b*sec(d*x+c)),x, algorithm="fricas")

[Out]

Timed out

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/cos(d*x+c)**(5/2)/(a+b*sec(d*x+c)),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{1}{{\left (b \sec \left (d x + c\right ) + a\right )} \cos \left (d x + c\right )^{\frac{5}{2}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/cos(d*x+c)^(5/2)/(a+b*sec(d*x+c)),x, algorithm="giac")

[Out]

integrate(1/((b*sec(d*x + c) + a)*cos(d*x + c)^(5/2)), x)